FlowCert: Translation Validation for Asynchronous Dataflow
via Dynamic Fractional Permissions

ZHENGYAO LIN, Carnegie Mellon University, USA
JOSHUA GANCHER, Carnegie Mellon University, USA
BRYAN PARNO, Carnegie Mellon University, USA

Coarse-grained reconfigurable arrays (CGRAs) have gained attention in recent years due to their promising
power efficiency compared to traditional von Neumann architectures. To program these architectures using
ordinary languages such as C, a dataflow compiler must transform the original sequential, imperative program
into an equivalent dataflow graph, composed of dataflow operators running in parallel. This transformation is
challenging since the asynchronous nature of dataflow graphs allows out-of-order execution of operators,
leading to behaviors not present in the original imperative programs.

We address this challenge by developing a translation validation technique for dataflow compilers to ensure
that the dataflow program has the same behavior as the original imperative program on all possible inputs and
schedules of execution. We apply this method to a state-of-the-art dataflow compiler targeting the RipTide
CGRA architecture. Our tool uncovers 8 compiler bugs where the compiler outputs incorrect dataflow graphs,
including a data race that is otherwise hard to discover via testing. After repairing these bugs, our tool verifies
the correct compilation of all programs in the RipTide benchmark suite.

CCS Concepts: » Theory of computation — Program verification; - Hardware — Reconfigurable logic
and FPGA:s.

Additional Key Words and Phrases: Translation Validation, Asynchronous Dataflow, Coarse-Grained Reconfig-
urable Arrays

ACM Reference Format:

Zhengyao Lin, Joshua Gancher, and Bryan Parno. 2024. FlowCert: Translation Validation for Asynchro-
nous Dataflow via Dynamic Fractional Permissions. Proc. ACM Program. Lang. 8, OOPSLA2, Article 289
(October 2024), 28 pages. https://doi.org/10.1145/3689729

1 Introduction

Even as Moore’s Law ends, many applications still demand better power efficiency, e.g., for high-
performance machine learning or for ultra-low-power environmental monitoring. A flood of
new hardware architectures has emerged to meet this demand, but one attractive approach that
retains general-purpose programmability is a class of dataflow architectures called coarse-grained
reconfigurable arrays (CGRAs) [Liu et al. 2019]. In a CGRA architecture, an array of processing
elements (PEs) is physically laid out on the chip. Each PE can be configured to function as a high-level
operator that performs an arithmetic operation, a memory operation, or a control-flow operation.
These PEs communicate via an on-chip network, reducing data movement costs compared to
traditional von Neumann architectures, thus making a CGRA more power efficient.

Authors’ Contact Information: Zhengyao Lin, Carnegie Mellon University, Pittsburgh, USA, zhengyal@cmu.edu; Joshua
Gancher, Carnegie Mellon University, Pittsburgh, USA, jgancher@andrew.cmu.edu; Bryan Parno, Carnegie Mellon Univer-
sity, Pittsburgh, USA, parno@cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART289

https://doi.org/10.1145/3689729

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0001-5475-5765
HTTPS://ORCID.ORG/0000-0003-2257-7073
HTTPS://ORCID.ORG/0000-0002-9113-1684
https://doi.org/10.1145/3689729
https://orcid.org/0000-0001-5475-5765
https://orcid.org/0000-0003-2257-7073
https://orcid.org/0000-0003-2257-7073
https://orcid.org/0000-0002-9113-1684
https://doi.org/10.1145/3689729

289:2 Zhengyao Lin, Joshua Gancher, and Bryan Parno

Abstractly, CGRAs run dataflow programs, or networks of operators that execute independently
and asynchronously. While CGRAs are able to run dataflow programs efficiently due to their
inherent parallelism, this parallelism also introduces new, subtle correctness issues due to the
potential for data races. As a result, dataflow programs are not written directly, but are instead
compiled from sequential, imperative languages. However, the gap between imperative and dataflow
programming means that these compilers are complex; to maximize performance, they must use a
variety of program analyses to convert imperative programs into equivalent distributed ones.

As CGRA architectures continue to emerge and rapidly evolve, we argue that formal verification —
mathematically sound proofs of system correctness — should be integrated early on; past experience
teaches us that belatedly retrofitting them may be costly or simply infeasible. Since CGRAs cannot
execute as intended without correct dataflow programs, we begin this effort by verifying the
translation from imperative programs to dataflow programs.

In this work, we propose using translation validation [Pnueli et al. 1998] to certify the results of
dataflow compilers. In our case, translation validation amounts to checking that the output dataflow
program from the compiler has the same behaviors as the input imperative program. Compared
to traditional testing, translation validation provides a much stronger guarantee, as it checks that
the imperative and the dataflow programs behave the same on all possible inputs. Additionally, in
contrast to full compiler verification, translation validation allows the use of unverified compilation
toolchains, which is crucial for the fast-developing area of CGRA architectures.

Our main challenge for leveraging translation validation is managing the asynchrony of dataflow
programs. Most translation validation works [Kundu et al. 2009; Necula 2000; Pnueli et al. 1998;
Sharma et al. 2013] prove equivalence between input and output programs via simulation, or
relational invariants between the states of the two programs. Since dataflow programs have expo-
nentially more states than imperative programs (arising from asynchronous scheduling decisions),
constructing this simulation relation directly would be quite tricky.

Instead, we utilize a two-phase approach. First, we use symbolic execution to prove that there is a
simulation between the input imperative program and the output dataflow program on a canonical
schedule. In the canonical schedule, the dataflow operators are scheduled to fire in a similar order
to their counterparts in the original imperative program.

Next, assuming the termination or fairness of the canonical schedule, we prove that any possible
schedule of the dataflow program must converge to the same final state as the canonical schedule, or
that any schedule can synchronize with the canonical schedule infinitely often. For our setting, this
requires showing that the dataflow program does not contain any data races. Inspired by fractional
permissions [Boyland 2013], we augment our symbolic execution with affine permission tokens to
track ownership of memory locations. In contrast with interactive program logics (e.g., concurrent
separation logic [Brookes 2006]) that typically require manual annotations, we automatically
compute dynamic permissions that may flow in arbitrary (sound) ways.

Putting together both phases, we prove that the imperative program is equivalent to the dataflow
program on all possible inputs and schedules. Furthermore, equivalence with the sequential program
also implies liveness and deadlock freedom for the dataflow program, as it enforces that the dataflow
program can make progress whenever the sequential program can.

We have implemented this technique in FlowCert, a translation validation system targeting the
state-of-the-art CGRA architecture RipTide [Gobieski et al. 2023], which operates via a compiler
from LLVM [Lattner and Adve 2004] programs to dataflow programs. Using our tool, we found 8
compiler bugs where the RipTide dataflow compiler generated incorrect dataflow programs. All of
these bugs were confirmed by the developers of the RipTide compiler. One of these bugs allows the
compiler to emit a dataflow program with data races, which are hard to discover via testing and
costly to fix after deployment.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:3

To summarize, our contributions in this work are:

e A novel two-phase translation validation technique to prove that the output dataflow program
has equivalent behavior as the input imperative program, capturing both correctness and
liveness properties.

e An implementation of our technique, FlowCert!, targeting the RipTide dataflow compiler.

e An evaluation of FlowCert on the RipTide dataflow compiler, which reveals 8 compilation
bugs. Most verification result takes around 10 seconds with a maximum of about 30 seconds.

2 Preliminaries: Dataflow Programs, CGRAs, and RipTide

Dataflow programming [Johnston et al. 2004] is an old idea dating back to the 1960s and 1970s.
Early foundational works include the dataflow architecture by Dennis et al. [Dennis and Mis-
unas 1974], as well as theoretical analysis of models of dataflow programs such as computation
graphs [Karp and Miller 1966], Kahn process networks [Gilles 1974], and synchronous dataflow [Lee
and Messerschmitt 1987]. The main motivation in these early works is to achieve a greater degree
of instruction-level parallelism [Ackerman 1982].

In the intervening years, the community has explored a wide variety of dataflow architec-
tures [Arvind and Culler 1986; Yazdanpanah et al. 2014]. Among these dataflow architectures,
coarse-grained reconfigurable arrays (CGRAs) [Liu et al. 2019] stand out due to their promising
power efficiency: recent work [Gobieski et al. 2021, 2023] is able to support general programmability,
while reducing the energy cost by orders of magnitude compared to a von Neumann core.

To utilize the efficiency and parallelism in CGRAs, the predominant general-purpose way to
program CGRAs is to compile a sequential, imperative program into a dataflow graph via a dataflow
compiler, as seen in CGRA projects such as PipeRench [Goldstein et al. 2000], WaveScalar [Swanson
et al. 2003], and more recently, RipTide [Gobieski et al. 2023] and Pipestitch [Serafin et al. 2023].

In this work, we focus on the approach taken by RipTide [Gobieski et al. 2023], which has a
dataflow compiler from arbitrary LLVM functions to dataflow programs. We briefly introduce
LLVM and dataflow programs below.

LLVM IR. LLVM [Lattner and Adve 2004] is a compiler framework and features an intermediate
representation called LLVM IR. Compiler writers can translate a higher-level language such as C or
Rust into LLVM IR, and then the LLVM framework can perform optimizations on LLVM IR and
produce machine code in various target architectures. For an informal description of the semantics
of the LLVM IR, we refer the reader to the official LLVM IR manual [LLVM 2024b]. In this work, we
use the subset of LLVM IR supported by the RipTide compiler, including basic control-flow, integer
arithmetic, and memory operations. Function calls and floating-point operations are not supported.

Dataflow programs. A dataflow program is a Turing-complete representation of programs. It
is represented as a dataflow graph in which the nodes are called operators and edges are called
channels. Semantically, operators can be thought of as stateful processes running in parallel, which
communicate through channels, or FIFO queues of messages. Repeatedly, each operator: waits to
dequeue (a subset of) input channels to get input values; performs a local computation, optionally
changing its local state or global memory; and pushes output values to (a subset of) output channels.
When an iteration of this loop is done, we say that the operator has executed or fired. Since different
CGRAs have different strategies for scheduling operators [Liu et al. 2019], we conservatively use
asynchrony to model all possible schedules.

Source code is available in our GitHub repository [Lin et al. 2024a]

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

289:4 Zhengyao Lin, Joshua Gancher, and Bryan Parno

A »p I v P I A B
\ \ \

!

) 0 o) 0

Carry Steer Store Load Compute

[— >
le—

O -

Fig. 1. Examples of operators. Carry and Steer manage control flow, Store and Load manipulate the main
memory, and op € {+, %, <, ...} executes pure arithmetic operations.

In Figure 1, we show the five most important types of operators in RipTide [Gobieski et al. 2023]%.
In Figure 1, reading from left to right, we first have the control flow operators, carry (C) and steer
(T). The carry operator is used to support loop variables. It has two local states: in the initial state,
it waits for a value from A, outputs it to O, and transitions to the loop state. In the loop state, it
waits for values from B and D (decider); if D is true, it outputs O = B; otherwise it discards B and
transitions to the initial state.

The steer operator is used for conditional execution. It waits for values from A and D. If D is true,
it outputs O = A; otherwise, it discards the value and outputs nothing.

To utilize the global memory, we have the load (LD) and store (ST) operators. The load operator
waits for values from P (base), I (offset), and an optional signal S for memory ordering; reads the
memory location P[I]; and outputs the read value to 0. Similarly, the store operator waits for
values from P (base), I (offset), V (value), and an optional signal S for memory ordering; stores P[I]
=V in the global memory; and optionally outputs a finish signal to 0.

All other compute operators (e.g., op € {+, *, <}) wait for values from input channels, perform
the computation, and then output the result to output channels.

To compile an LLVM program to a dataflow program, the RipTide compiler first maps each LLVM
instruction to its corresponding dataflow operator, and then it enforces the expected control-flow
and memory ordering semantics of the original program. Using a control dependency analysis, it
inserts steer operators to selectively enable/disable operators depending on branch/loop conditions;
Using a memory ordering analysis, it inserts dataflow dependencies between load/store operators
to prevent data races.

These analyses are quite complex and use various optimizations to allow more parallelism than
the original LLVM program. As shown in our evaluation in Section 6, this process can easily have
bugs. Hence, in our work, we use translation validation to certify the correctness of dataflow
compilation.

3 Overview and an Example

FlowCert performs translation validation on the RipTide dataflow compiler, which compiles LLVM
programs to dataflow programs. Given the input program and the compiled output program (along
with some hints generated by the compiler), FlowCert performs two checks: first, a simulation
check, which verifies that the LLVM program is equivalent to the dataflow program on a restricted,
canonical schedule of dataflow operators; and second, a consistency check, which proves that the
choice of the canonical schedule for the dataflow program is general and all other schedules reach
the same final state as the canonical schedule.

If a pair of input/output programs passes both checks, the two programs are equivalent (in the
sense of Definition 2). Equivalence implies both safety — the dataflow program returns the correct

2FlowCert supports all RipTide operators, except for the Stream operator, as described in Section 7.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:5

define void @test(i32* %A, 1i32* %B, i32 %len) { 0 0
entry: | |
1
C
=

br label %header
header:
%i = phi i32 [o, %entry 1, [%i_inc, %body 1]
%cond = icmp slt i32 %i, %len
br i1 %cond, label %body, label %end
body :
%idx1 = getelementptr 132, i32* %A, 132 %i
%A_i = load 132, i32* %idx1
%A_i_inc = add i32 %A_i, 1
%idx2 = getelementptr i32, i32* %B, i32 %i
store 132 %A_i_inc, i32% %idx2
%i_inc = add i32 %i, 1
br label %header
end:
ret void

}

0N O U A WN =

©

N =

© N o U AW

(a) Input LLVM function. (b) Output dataflow program.

Fig. 2. An example of input/output programs from the RipTide dataflow compiler. Most dataflow operators
correspond to LLVM instructions: the comparison operator corresponds to line 6, the add operators correspond
to lines 11 and 14, while the load and store operators correspond to lines 10 and 13, respectively.

values — and liveness — the dataflow program always terminates correctly, and does not contain
communication-related deadlocks.

Example. In Figure 2, we have an example input and output program from the dataflow compiler.
The input LLVM function @test in Figure 2a contains a single loop with loop header block %header
and loop body block %body. The loop increments variable %i from @ to %len, and at each iteration,
updates %B[%i] = %A[%i] + 1. The LLVM function @test is compiled to the dataflow program in
Figure 2b.

In addition to compute and memory operators, the compiler also inserts operators to faithfully
implement the sequential semantics of the LLVM program. The steer operators marked with T
enforce that the operators corresponding to the loop body only execute when the loop condition is
true. The carry operator 1 is used for the loop variable %i (line 5). The carry operator 2 is used for
a loop variable inserted by the compiler to enforce a memory dependency: since arrays A and B
could overlap, we have an additional dataflow path along operators 9 — 2 — 5 — 7 in order to
enforce that the load in the next iteration waits until the previous store has finished.

Simulation Check. The first step in FlowCert’s translation validation procedure is to check that the
LLVM and dataflow program are equivalent on a canonical schedule of dataflow operators, where
the dataflow operators are executed in the same order as their LLVM instruction counterparts.

This is done using a simulation relation, or relational invariant, between the states of LLVM
and dataflow programs. FlowCert constructs this relation by placing corresponding cut points on
both the LLVM and the dataflow sides. A cut point symbolically describes a set of pairs of LLVM
and dataflow configurations satisfying a correspondence condition; a list of cut points together
describes the simulation relation. Figure 4 shows the list of cut points for the example. FlowCert
places cut point 1 for the initial configurations, cut point 2 for the loop structure, and a final cut
point L for all final configurations. For each pair of LLVM and dataflow cut points, FlowCert also
infers a list of equations expressing the correspondence of symbolic variables in these cut points.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

289:6 Zhengyao Lin, Joshua Gancher, and Bryan Parno

—» Channels with one value
+-» Empty channels
Output channels in the current step
< Fired operators in the current step D, + P <= P, + P, Py, + Py, + Py, <= Py + Py
P, <=, + B, P, + Py + Py + Py <= B, Py <= P, + Py

D

Py <= Py, * Py,

<= p, +
Py <7 Pu P read <= p,, + b,

Py <= Py write <= B, + By, Py, <= Py

| o
b2 | 1o
@

Fig. 3. This plot shows a trace of execution from dataflow cut point 2 (upper left corner). The operators fired
in this trace are 1, 2, 4, 3,5, 7, 8,9, 6 (which are inferred from the LLVM trace from cut point 2 to cut point
2). At the end of the trace, the configuration matches cut point 2 again. In each configuration, we mark the
fired operators with orange lightning symbols. The emptiness of each channel after firing the operator(s)
is represented by dashed vs solid lines. Before the firing of an operator, the input channels of the operator
should be non-empty and marked with a solid line. After firing, the input channels are emptied, and the
modified output channels will become non-empty and marked with a solid, orange line. The symbolic values
in each channel are omitted, but their attached permission variables (starting with p) are marked. At the top
of each configuration, we also indicate the permission constraints added at each step.

Index LLVM Program Point Dataflow Configuration Correspondence
1 %entry Initial config Memjym = Memgs
2 %header (from %body) First configuration in Figure 3 Memyy, = Memge A %1 =1
€L %end Final config Memyjym = Memgr

Fig. 4. Cut points for the example in Figure 2. For the second LLVM cut point, FlowCert places it at the
program point at the back edge from %body to %header. The correspondence equality Memy,, = Memgs
means that the memory state should be the same at each cut point. The equality %i = i means that the
LLVM variable %i at cut point 2 should be equal to the dataflow variable i referring to the value in the
channel from operator 6 to 1 in Figure 3. We implicitly assume that all function parameters are equal (i.e.
%A = A A%B =B A %len = len).

To automatically check that the proposed relation in Figure 4 is indeed a simulation, we perform
symbolic execution [Baldoni et al. 2018] from all pairs of cut points (except for L) until they reach
another pair of cut points. On the LLVM side, we first symbolically execute cut point 1, which turns
into two symbolic branches: reaching %header after one loop iteration (cut point 2), or failing the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:7

loop condition and reaching %end (cut point .L). For LLVM cut point 2, we also have two branches:
one reaching cut point 2 again after a loop iteration, the other failing the loop condition and
reaching cut point L.

For the dataflow side, we have a correspondence between a subset of LLVM instructions and a
subset of dataflow operators, which is automatically generated by the dataflow compiler. We use
this mapping to infer the order in which we fire the dataflow operators, i.e., the canonical schedule.
For example, from LLVM cut point 2, there are two branches reaching cut point 2 and cut point L
respectively. These two branches have two traces of LLVM instructions (excluding br):

e For the first branch to cut point 2: lines 5, 6, 9 - 14;
e For the second branch to cut point L: lines 5, 6.

For the first branch, the LLVM instructions map to dataflow operators 1, 2, 4, 7, 8, 9, 6 (excluding ones
that do not have a corresponding operator; operator 2 corresponds to a phi instruction implicitly
inserted during compilation for memory ordering). LLVM instructions in the second branch map
to dataflow operators 1, 2, and 4. Therefore, for dataflow cut point 2, we execute these two traces of
dataflow operators (and also any steer operator that can be executed), which gives us two dataflow
configurations. Figure 3 shows the trace of execution of the first branch from cut point 2 to itself.
At the end of the execution, we can see that the configuration matches the cut point 2 we started
with, except with a different memory state and symbolic variables (e.g. i + 1 vs. 1 in the channel
from operator 6 to 1).

After a branch is matched to a cut point, we check the validity of the correspondence equations
at the target cut points (given the assumptions made in the source cut point). For example, for the
branch shown in Figure 3, we check that given the source cut point correspondence (Memyy, =
Memgs A %i = 1), the target cut point correspondence holds:

Memyyn [%B[%1] — %A[%1] + 1] = Memge[B[i] > A[i] +1] A% + 1 =1 + 1

If this check succeeds for all cut points, we soundly conclude that we have obtained a simulation
relation between the LLVM program and the dataflow program on the canonical schedule.

Consistency Check. Once we have established a simulation relation between the LLVM program
and a canonical schedule of the dataflow program, we perform a consistency check to ensure that
the dataflow program is free of data races. As a result of race freedom, if the LLVM program is
terminating, then any other schedule will terminate in the same final state as the canonical schedule.

We achieve this by using affine permission tokens. For this example, let us consider a simplified set
of permission tokens {0, read;, read,, write}, where 0 means no permission to read or write, and
read/write means read/write permission to the entire memory, respectively. Denote p; + p; as the
disjoint sum of two permission tokens p; and p,. The disjoint sum is a partial function satisfying
p+0=0+p =p, read; + read; = write. However, write + write is undefined. Moreover, we
partially order these permission tokens by 0 < ready, read; < write. We will write read in place
of read; or read if the subscript is irrelevant.

In general, as defined in Section 5, we allow write to split into k tokens of read, for a predeter-
mined value of k, and we have one permission token for every memory region, such as the array A
or B. The intuition is that to write to a memory location, an operator needs to have exclusive write
ownership of that location and no other operator should have write or read permissions; while to
read a memory location, we allow potentially k parallel reads to happen independently. If all reads
are done, and a write needs to occur, we merge all read tokens into one write token.

These permission tokens are passed between operators via channels. Permission tokens can
be dropped, but they cannot be created or duplicated (i.e., they are an affine resource). We attach

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

289:8 Zhengyao Lin, Joshua Gancher, and Bryan Parno

permissions to values flowing through the dataflow program, instead of creating separate channels
for communicating permission tokens.

To determine the exact assignment and flow of permission tokens, we first attach a permission
variable (representing a permission token that we do not know a priori) to each value in the
channels of dataflow configurations in each symbolic branch. Figure 3 shows an example of this
attachment of permission variables and permission constraints. At the starting state cut point
2, we attach free permission variables py, ps, p3, ps to values in the configuration. After the first
step in which operators 1 and 2 fire, these permission variables are consumed by the two carry
operators and we generate fresh permission variables ps, ps, p7 for the new output values. We
require that the permission variables are used in an affine fashion: operators cannot duplicate or
generate permission tokens; instead, they have to be obtained from the inputs. Hence for the first
step in Figure 3, we add two constraints ps + ps < p1 + p3 and p; < ps + p4 to say that the output
permissions have be contained in the input permissions. Furthermore, if the operator is a load or a
store, such as in Figure 3 steps 4 and 6, we require that the suitable permission (read for load, and
write for store) is present in the input permissions (e.g. write < pq3 + p17 at step 6 in Figure 3).

Finally, when the execution is finished and has either hit a final state or another cut point, we
have collected a list of constraints involving a set of permission variables. If the configuration is
matched to a cut point, we add additional constraints to make sure that the assignment of tokens
at the cut point is consistent. For example in Figure 3, since the last configuration is matched again
to the same cut point 2, we would add these additional constraints: p; = p19, p2 = p1s, P3s = Ps,
P4 = po. We then solve for the satisfiability of these constraints with respect to the permission
algebra ({0, read;, read;, write}, +, <) that we have defined above.

If there is a satisfying assignment of the permission variables with permission tokens, then
intuitively, the operators in the dataflow program are consistent in memory accesses, and there
will not be any data races. In Section 5, we show that this implies that any possible schedule will
converge to the canonical schedule we use. For the example in Figure 3, a satisfying assignment
is py = p7 = P15 = P16 = P17 = P13 = write with all other variables set to 0. This assignment
essentially passes the write permission across the cycle of operators2 -5 -7 — 8 — 9 — 2.

4 Equivalence on a Canonical Schedule via Cut-Simulation

We detail the first half of our translation validation technique, which proves via cut-simulation that
the LLVM program is equivalent to the dataflow program when restricted to a canonical schedule
of dataflow operators.

Most of our formulation is independent of the source language. Hence, instead of using LLVM
directly, we assume some sequential and imperative input language called Seq such that 1) Seq is
deterministic; 2) Seq has a sequentially consistent memory model (as do dataflow programs); 3) Seq
programs operate on fixed-width integer values (as do dataflow programs).

Throughout this section, we fix a dataflow program and a Seq program, and we denote their op-
erational semantics as transition systems (Zaf, Car, —df) and (ZLseq, Cseq» —>seq)» respectively, where
Iyt and Igeq are the sets of initial configurations, and Cyr and Cieq are the sets of all configurations.

We use Memyge(cqr) to denote the state of the memory in a dataflow configuration cy4¢, and
similarly Memgeq(cseq) for the memory in a Seq configuration csq. We will omit the subscripts
when it is clear from the context. We assume that the memory map is modeled in the same way
in both semantics, so that we can directly compare them by Mem(cg4r) = Mem(cseq). Additionally,
both the dataflow and Seq programs have input parameters (e.g., the pointer %A in Figure 2); thus,
we assume a relation ~7 C Zgr X Zseq on initial configurations that guarantees equal values on all
input parameters.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:9

For a transition relation — € {—gf, —seq}, We use —* for the reflexive-transitive closure of
—, and —7 for the transitive closure of —. A configuration c is terminating/final if there exists
no configuration ¢’ such that ¢ — ¢’. A trace is a finite or infinite sequence of configurations
T =¢1...Ci... such that ¢; — c¢j4q for any i. A trace 7 is complete if 7 is infinite or the last
configuration of 7 is final. We define Tracesyr and Traces.q to be the set of all traces in the dataflow
and Seq semantics, respectively. For the dataflow semantics, we use —¢; to denote the deterministic
firing of a particular operator o.

One important tool that we use is symbolic execution, and in the following, we establish some
notation for symbolic execution. Let x be a list of variables x = (xi,...,x,). Let V be the set of
all bit-vectors of a predetermined length (for modeling fixed-width integers). We use Terms(x) to
denote the set of symbolic expressions constructed from bit-vector constants in V, variables in x,
and any bit-vector operation we could perform in our semantics (e.g., a 32-bit zero bit-vector @s,, or
a term like x; + 13 are in Terms(x)). For s € {df, seq}, we use Cs(x) to represent the set of symbolic
configurations with free variables x in the semantics s. A symbolic configuration ¢(x) € Cs(x)
is similar to a configuration but over symbolic expressions Terms(x) instead of only bit-vector
constants in V (for example, a symbolic dataflow configuration can have symbolic expressions
such as x; + 13 in the channels). If we have a substitution o : {xy,...,x,} — Terms(y) from x to
symbolic expressions over some other list of variables y, we denote c(o) € C;(y) to be the result of
the substitution. Symbolic execution ¢(x) —s ¢’(x) | ¢(x) holds if for any vy, ...,v, € V such that
¢(v1,...,0,) holds, we have c(vy,...,0,) —5 ¢’(v1,...,0,) in the concrete semantics. Intuitively,
this means symbolic execution from c(x) to ¢’(x) with path condition ¢(x).

A dataflow program does not have a notion of a return value, and the only observable state
after finishing execution is the modified global memory. Thus we first define when two traces are
equivalent based on their memory state.

sq .. _ 1 l _ 1 j
Definition 1 (Memory-synchronizing traces). Let 7gf = cyp ... Cgp ... and Toeq = Cgeq - - - Cseq - - - D€
two complete traces starting from céf and csleq, respectively. The traces g and Tseq r€ Mermory-

synchronizing iff Mem(c};) = Mem(cj,,), and

’ ’
), where ¢ and cg, are the final

o If 74 is finite, then 7yeq is finite and Mem(c};) = Mem(c
states of 7gr and ryeq, respectively.
’

o If 74 is infinite, then 7,q is infinite, and for any i, j € N, there exist configurations c o and

’
seq

Cleq With Mem(cf) = Mem(cg.q), such that ci. —3 ¢} and Cleq —teq Cheq:
In other words, two complete dataflow and Seq traces are memory-synchronizing if they both
terminate and have the same memory state in the initial and final configurations; or they are both
infinite and are able to reach equal memory states from any intermediate state.
Now, we may define program equivalence, which describes when two matching initial configura-

tions for dataflow and Seq exhibit the same observable behaviors:

Definition 2 (Program equivalence). Two programs (Zgf, Car, —af) and (Zseq, Coeqs —seq) are equiv-
alent if for any pair of initial states cqr ~7 C5eq With Mem(cqr) = Mem(cseq), if we take any complete
dataflow trace 7gr = cqr . .. and the unique complete Seq trace Tgeq = Cseq - . - (Unique since Seq is
deterministic), then 74r and z;q are memory-synchronizing.

Intuitively, the dataflow program and Seq program are equivalent if any pair of complete traces
from corresponding initial states are memory-synchronizing; i.e., they either both terminate with
the same memory state, or both run forever and synchronize infinitely often.

Our final goal is to achieve Definition 2. We will do so by first verifying a weaker property of
equivalence along a particular, deterministic canonical schedule of the dataflow program. Then,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

289:10 Zhengyao Lin, Joshua Gancher, and Bryan Parno

in Section 5, we show that this canonical schedule suffices to prove equivalence for all possible
dataflow schedules.

First, we introduce canonical schedules, which determinize dataflow programs using the infor-
mation contained in Seq traces:

Definition 3 (Canonical schedule). A canonical schedule is a function Canon : Cgr X Tracesgq —
Tracesgyr that selects a dataflow trace using a Seq trace, such that

e For any c4r € Cyr and any non-empty Seq trace 7eq, Canon(cgr, Tseq) is a dataflow trace
starting in cg.

o If 74 is finite, then Canon(cqf, Teeq) is finite.

e For any cq4¢ € Cy, if Ts’eq is a prefix of 7yeq, then Canon(cyr, rs’eq) is a prefix of Canon(cgf, Tseq)-

e The choice of the canonical schedule is well defined for symbolic configurations and traces.
If c4¢(x) is a symbolic configuration and 7,.q(y) is a symbolic trace, then for any x,y € V,

Canon(cgr (%), Tseq(y)) fires the same sequence of operators.

We then specialize program equivalence (Definition 2) by restricting our attention to those
canonical dataflow schedules:

Definition 4 (Program equivalence on a canonical schedule). Let Canon be a canonical schedule.
Two programs (Zgr, Car, —dr) and (Lseq, Cseq» —>seq) are equivalent on the canonical schedule Canon if
for any pair of initial states cqr ~ 7 cseq With Mem(cqr) = Mem(cseq), if we take the unique complete
Seq trace Tgeq = Cseq - - - » then Canon(cgs, Teeq) is a complete dataflow trace, and Canon(cqt, Tseq)
and Tyeq are memory-synchronizing.

That is, instead of enforcing that all complete dataflow traces are memory-synchronizing to the
complete Seq trace, we only require that there exists one such trace selected by some canonical
schedule Canon.

Canonical Schedules for RipTide. In our case study of verifying compilation from LLVM programs
to RipTide dataflow programs, the specific canonical schedule Canon is a heuristic designed for
LLVM and the RipTide compiler. We instrument the RipTide compiler to output a partial map
hint : {L,..., Ly} — {o01,...,0,}, where 1, ..., I, are LLVM instructions in the LLVM program,
and oy,...,0, are operators in the dataflow program. We require that the image of hint covers
all dataflow operators except for steer operators (which are control-flow operators and have no
direct correspondence to an LLVM instruction). The canonical schedule Canon(cq, Tiiym) is then
inductively constructed following the LLVM instructions executed in jjyy:

€ If pym = €

Canon(cgs, Tivm) = C Iy If = 4
zar - Canon (¢, 7) Tivm = Cllvm * Ty

where € is the empty trace, - denotes trace concatenation, I is the LLVM instruction executed at
Clivm, and 7gs = cgf . .. c(’if is a dataflow trace firing hint(I) and then any fireable steer operators
(which may be fired in any order, as they all commute). If hint(I) is not defined or not fireable in
caf, then zgr = € and ¢ = cqf-

In the following sections, we outline the steps to verify that the dataflow and Seq programs
satisfy Definition 4. In Section 4.1, we first describe our general method of using a coinductive
invariant called cut-simulation that implies the property in Definition 4. In Section 4.2, we show
how cut-simulation can be symbolically represented by cut points. In Section 4.3, we present the
algorithm to check that a set of cut points does form a cut-simulation. Finally in Section 4.4, we
describe our heuristics to infer cut points for the compilation from LLVM to dataflow programs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:11

4.1 Proving Equivalence on the Canonical Schedule via Cut-Simulation

Traces from Jyr and Zg.q are unbounded in general, so to prove the equivalence on a canonical
schedule (Definition 4), we need to verify a coinductive invariant about the pairs of traces starting
from (Zyf, Jseq), and such an invariant is a cut-simulation relation [Kasampalis et al. 2021].

Definition 5 (Cut-simulation). Let R C Cyr X Cseq be a binary relation. We say that R is a cut-
simulation between (-Z-Seq: seq» _)seq) and (Idf: Cat> _)df) iff for any (Cdf, cseq) € R,if Cseq seq Cge

for some c(,, then there are (¢}, cjcq) € R such that ¢y —ieq Cieq and car =y iy

q

Intuitively, a cut-simulation states that if the two transition systems are synchronized in R, then if
we can take a step on the Seq side, we can step the two transition systems further to re-synchronize
them in R.

Note that in our setting, we are verifying that the dataflow program simulates the Seq program
(i.e., the target program simulates the source program), instead of the other way around which
is common in compiler verification work. This is because we separately verify that the dataflow
program has a deterministic result (Section 5), and the backward simulation suffices.

To satisfy our desired equivalence properties, we look for cut-simulations that are memory-
synchronizing:

Definition 6. A binary relation R C Cyr X Cseq is memory-synchronizing iff

e For any (cgf, Cseq) € R, Mem(cqr) = Mem(cseq)-
e For any initial configurations c4f ~7 €5eq With Mem(car) = Mem(cgeq), (af, Cseq) € R.
e For any (cgf, Cseq) With cgt, Cseq final and Mem(cgr) = Mem(cgeq), (caf, Cseq) € R.

The second and third conditions enforce that R should include all pairs of corresponding initial
states, as well as final states; thus R covers all complete traces.

If there exists a memory-synchronizing cut-simulation R, then we can conclude via a coinductive
argument that the two programs are equivalent on a canonical schedule (Definition 4).

4.2 Describing a Cut-Simulation via Cut Points

To finitely describe a proposed cut-simulation, we use a list of pairs of dataflow and Seq cut points.
A cut point is a pair P = (cqr(X), cseq(¥)) | @(X,y) of symbolic dataflow and Seq configurations con-
strained by the correspondence condition ¢(x,y). In our case, the condition ¢(x, y) is a conjunction
of equalities between variables in x and y.

Semantically, each cut point describes the binary relation R(P) := {(caf(x), ¢seq(¥)) € Caf X Cseq |
x,y € V,¢(x,y)}. For a list of n cut points

(P = (che (), cleg (¥)) | 0" (K y)} s

the relation they describe is the union of the subrelation each describes: R(P?, ..., P") := (J; R(P').
To ensure that the cut-simulation we propose satisfies the three conditions in Definition 6, we
only construct cut points such that:

e For any cut point P, the correspondence constraint ¢’(x’,y’) implies equal memory configu-
rations Mem(cl(x)) = Mem(cle, (v")).

e The first cut point exactly represents the pairs of equivalent, initial configurations with equal
memory; i.e., R(P') = {(cdf, ¢seq) € ~1 | Mem(cgr) = Mem(cgeq) }-

e The last cut point P" exactly represents the pairs of final configurations with equal memory;
ie, R(P") = {(cqr, cseq) € Car X Cseq | cat, Cseq final, Mem(cqf) = Mem(cseq)}~

Then R(P!,..., P") satisfies Definition 6.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

289:12 Zhengyao Lin, Joshua Gancher, and Bryan Parno

4.3 Checking Cut-Simulation

Now that we have a way to symbolically describe a relation R(P?, ..., P") with cut points satisfying
Definition 6, we need to check that it is indeed a cut-simulation.

To achieve this, we perform symbolic execution from each cut point and try to reach another
cut point. Suppose we are checking cut point P! = (¢! (X)), cloq(¥")) | ¢'(x',y'). We perform the
following three steps.

seq

Step 1. Symbolic execution of Seq cut points. We perform symbolic execution from céeq(yi) and
get a list of k; symbolic branches with path conditions denoted by ¢:

seq(y) seq seq(y) | wseql(y)

c;eq(yi) _>:eq seq (Y) | Yseqk: (Y)

where each right hand side cé’elq(yi) forl € {1,...,k;} is an instance cgeq(cr) of some Seq cut point

cgeq (y') with substitution o : yJ — Terms(y'). That is, at the end of each branch, the configuration
is matched to some cut point.
Note that since the initial symbolic configuration c,(y’) does not have any constraints, the

final path conditions should cover all cases of y'; in other words, \/;Zl Yseq (y') is valid.

Step 2. Symbolic execution of dataflow cut points on the canonical schedule. For the dataflow cut
point cflf(xi), since the dataflow semantics is nondeterministic, the choice of operators to fire is
unclear. Therefore, we follow a canonical schedule Canon (Definition 3) to replicate the execution
of Seq branches on the dataflow side.

For each Seq branch [€ {1,...,k;}, we have a Seq trace Tyeq = céeq(yi) cseq(y). By mapping
this trace through the canonical schedule 74 := Canon(c} (X'), 7seq), We get a list of dataflow
operators (oi, s szl) fired in z4¢. Then we symbolically execute the dataflow cut point céf(xi) on
the schedule (o{, .. ~:0£1,) with the path condition g (x') == Jy'e’ (x, ') A Pseqi(y"):

¢ (x) o 0) | g (<)

The new path condition y/4¢;(x') amounts to replacing variables in the Seq path condition ¥seq;(y")
with corresponding variables in the correspondence constraint ¢’(x!, y'). With the additional path
condition imposed, the symbolic execution is not likely to branch. If it does, the cut-simulation
check will fail; in which case, a more precise heuristic is needed for the canonical schedule.

By doing this for each Seq branch, we get a list of dataflow branches:

chr(x) = e () | Yaga (x) (1)

clhe(x') =% 8 (xh) | g, (x)

In our case, these branches should cover all possible values of x' (i.e., \/;Zl Yar1(x) is valid), since
in the path condition yg4r;(x'), the correspondence constraint ¢*(x', y') only contains a conjunction
of equalities between variables in x! and y', and the union of all Seq path conditions \/ﬁ1 Yseq (¥')
is valid. In general, however, if the correspondence constraint ¢*(x',y') is more complex (e.g.
containing formulas such as x; = 2y;), we may need to additionally verify that \/;Z1 Yars (1) is
valid to ensure that all possible concrete configurations represented by cy.(x') is covered in the
symbolic execution.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:13

Step 3. Cut point subsumption. Finally, we check that each pair of dataflow and Seq branches
(cfi’f(xi), c;’elq(yi)) is contained in some target cut point P/ = (¢} (%), cleq (¥9)) | ¢/ (I, y9):

{4, iy (7)) 1 9" ¥) A e () A Yrequ (7)) € R(PY))

or equivalently, there are substitutions oil

or equ there are g x — Terms(x'), cré’elq .y} — Terms(y') such that the
ollowing conditions hold:

e The dataflow branch is an instance of the target dataflow cgt point: c&é(xi)_ = cgf(o(g’fl).
o The Seq branch is an instance of the target Seq cut point: c;’elq(yl) = cieq(cr;’elq)
e The correspondence condition at the target cut point is satisfied given the source cut point

correspondence and the path conditions:
S . . Y
(pl(xla Yl) A ‘ﬁdf,l(xl) A lpseq,l(yl) - (p](o-cl[fy O';eq

If the steps in this section are passed for all cut points i, we can conclude that R(P!, ..., P") is
indeed a cut-simulation.

4.4 Heuristics to Infer Cut Points

In this section, we describe our heuristics to infer cut points specific to LLVM and dataflow programs.
In general, program equivalence for Turing-complete models like LLVM and dataflow programs
is undecidable, so our best hope is to have good heuristics to infer the cut points for the specific
input/output programs of the compiler.

The placement of cut points is important for the symbolic execution to terminate. It is in theory
correct (for terminating dataflow and LLVM programs) to have exactly two cut points: one at the
initial configurations, and one for all final configurations. But the symbolic execution will try to
simulate all possible traces together, which are unbounded, and the check may not terminate. To
ensure termination, on the LLVM side, we place a cut point at the entry of the function (i.e., the
initial configuration), the back edge of each loop header block, and the exit program point.

For the dataflow program, we need to place the first cut point at the initial configuration of the
dataflow program, and the last cut point at the final configuration. For loops, ideally, we want to
place the cut points at the corresponding “program points” at loop headers. However, due to the
lack of control-flow in the dataflow program, the form of the corresponding dataflow configurations
at these “program points” is hard to infer statically. Instead of generating the dataflow cut points
ahead of time, we dynamically infer them during the symbolic execution of dataflow branches. For
example, after mirroring the LLVM branch execution in a dataflow branch such as in Equation (1), if
the dataflow cut point corresponding to the LLVM cut point has not been inferred yet, we generalize
the symbolic configuration on the RHS of the dataflow branch Equation (1) to a dataflow cut point
by replacing symbolic expressions with fresh variables. The correspondence condition is then
inferred using compiler hints to match fresh variables in the new dataflow cut point to an LLVM
variable defined by some LLVM instruction.

Note that these heuristics need not be sound. As long as the cut points for the initial and final
dataflow/LLVM configurations are generated correctly and the cut-simulation check in Section 4.3
succeeds, the soundness of the cut-simulation follows. While we do not prove that these heuristics
are complete, they work well in practice and cover all test cases in our evaluation (Section 6).

If the heuristics generate incorrect cut points, the simulation check would still terminate but fail.
To see this, on the LLVM side, our placement of the cut points guarantees termination because we
place one at each loop header. On the dataflow side, since the execution is mirroring the LLVM
execution and no additional search is done, the algorithm would terminate but may fail to match
the resulting dataflow configuration against the cut point.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

289:14 Zhengyao Lin, Joshua Gancher, and Bryan Parno

5 Verifying Race-Freedom with Affine Permission Tokens

After checking the equivalence between the dataflow and Seq programs on a canonical dataflow
schedule, we still need to prove that this canonical schedule is general. Indeed, since the dataflow
program is asynchronous and nondeterministic, other choices of schedule may lead to data races
and different final states.

The main issue lies in the shared memory accessible by parallel memory operators in a dataflow
program. Therefore, in addition to checking the equivalence on the canonical schedule, we verify
that the canonical schedule is race-free, using affine permission tokens which each represent unique
ownership of a memory location. In the absence of data races, firing operators in a different order
than the canonical schedule would not affect the final result. Affine permission tokens are, in essence,
a dynamic variant of fractional permissions [Boyland 2013]. In our case, the exact placement of
permission tokens is resolved dynamically via symbolic execution.

We associate each value flowing through a dataflow program with a permission token in the
form of write [, read I, or any formal sum of them, for any memory location . These tokens are
used by dataflow operators in an affine fashion: they can be dropped but not replicated or generated,
and they are disjoint in the initial state. To support independent parallel reads and enforce that
writes must be exclusive, a write token can be split into k many read tokens (for a predetermined
parameter k), and inversely, k of such read tokens can be merged to get back a write token.

We show that if there is a consistent assignment of affine permission tokens to a finite trace r,
then any alternate trace 7’ converges to the same final state of 7, assuming that 7’ fires fewer or
equal operators than 7, counting multiplicity (Theorem 2). Furthermore, if 7 is a finite complete
trace, then the initial configuration of 7 is strongly normalizing (Theorem 3).

In Section 5.1, we first define consistent traces, which refer to traces with a consistent assignment
of affine permission tokens, and we show their properties. In Section 5.2, we show how to check
that any trace in the canonical schedule is consistent. Finally, in Section 5.3, we combine these
results with those in Section 4 to show how the simulation check and consistency check together
imply the full equivalence of the dataflow and Seq programs assuming that either the Seq program
is terminating or that the canonical schedule is fair.

5.1 Consistent Traces

In this section, we define the notion of a consistent trace as a finite trace in which a permission
token is assigned to each value, and the tokens are transferred through channels in an affine fashion.

Let us first describe the permission tokens and their assignment to values. The permission tokens
are drawn from the permission algebra defined below.

Definition 7 (Permission Algebra). Let L be a set of memory locations and k be a positive integer.
The permission algebra is a partial algebraic structure (P(L, k), 0, +, <) where

e P(L, k) is the set of permissions such that (P(L, k), 0, +) forms a partially commutative monoid.
It consists of formal sums read [y +- - -+read l,,, with [, . . ., I, € L, modulo the commutativity
and associativity of +. We require that for a location /, at most k copies of read [are present
in the formal sum. We denote N (I, p) to be the number of occurrences of read [in p. We call
p + q the (disjoint) sum of p,q € P(L, k). In particular, for any [€ L, p + q is defined iff for all
LN(p)+N(,q) <k
We also denote

writel:=readl+---+readl

k copies

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:15

e P(L, k) is partially ordered by < with p < q (reads q contains p) iff for any I, the number of
occurrences of read [in p is less than or equal to that in q.

Now we define when two or more permissions are considered disjoint.

Definition 8. We say that the permissions py, . . ., p, € P(L, k) are disjoint (write disjoint(p1, . .., pn))
iffforanyl e Landi# j, N(l,p;) + N(,p;) < k.

For example, in P({A, B}, 2), we have that
readB+read A+ read A=read B+write A,

while read A + write A is not defined (i.e., read A and write A are not disjoint).
Intuitively, the reason to allow a write to split into k copies of read is to allow the following
two valid scenarios:

e A store operator can write to a memory location if it has exclusive write permission to the
location (i.e., no other operator has a write or read permission to that memory location);
o A load operator can read from a memory location if it has a read permission and all other
currently existing permissions in the system are also read.
Furthermore, once (at most k) parallel reads are performed, a store operator can perform a memory
write by reclaiming all existing read permissions and merging them into a write; hence we define
write as the sum of k copies of read.
Now let us define the assignment of permission tokens to values in a configuration. Let E denote
the set of channel names. For a configuration ¢ € Cyr and a channel e € E, let Channel(c,) denote
the state of the channel e in ¢, which is a string over V representing the values in the channel e.

Definition 9 (Permission Augmentation). Let ¢ € Cyr be a dataflow configuration. A permission
augmentation of c is a partial map t : E X N — P(L, k) such that for any e € E, t(e, n) is defined iff
n € {1,...,|Channel(c, e)|}. We call (c, t) a permission-augmented configuration.

Intuitively, t(e, n) is the permission we attach to the n-th value in the channel e. Permission
augmentations defined above can assign arbitrary permissions to values. However, to ensure race-
freedom and confluence, we need to restrict them so that, for example, two operators cannot share
awrite token. In the following definitions, we define when a configuration, a transition, and a
trace are consistently augmented with permissions, meaning that permissions are used in an affine
fashion.

Definition 10 (Consistent Augmentation). A permission augmentation (c, t) is consistent if the
permissions in the image of ¢ are disjoint.

Definition 11 (Consistent Transition). Let ¢ —¢; ¢’ be a transition. Let £, ¢’ be two consistent
permission augmentations for c, ¢/, respectively. Let p1, . .., p, be the permissions in ¢ attached to
input values of 0 and qy, . . ., qm, be the permissions in ¢’ attached to output values of 0. We say
(c,t) =4 (¢’,1') is a consistent transition iff:

e (¢, t) and (¢, t’) are consistent.

o t(e,n) =t'(e,n) for all channel e and position n except for those changed by o.

o (Affine) g1+ +qm < p1+---+pn-

o (Load Permission) If o is a load operator on a memory location! € L,thenread! < p;+---+p,.

o (Store Permission) If o is a store operator on a memory location [€ L, then write [<

pr+-+Pp.
Definition 12 (Consistent Trace). Let ¢; —gf - -+ —gf ¢, be a trace. Let ty,. .., t, be permission
augmentations to ¢y, . . ., ¢, respectively. We say that (cq, #1) —qr - - —dar (cn, tn) 1S a consistent
traceiff for alli € {1,...,n}, (ci, t;) —af (Ci+1, tir1) 1S consistent.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

289:16 Zhengyao Lin, Joshua Gancher, and Bryan Parno

A crucial property of a consistent trace is that any two operators fired in sequence can be
commuted without changing the final state.

Lemma 1. Let (c1,t1) =3t (¢, t2) =58 (c3,t3) be a consistent trace. Suppose ¢; — 3 ¢, for some
configuration c}. Then c; —i c3 and there is a permission augmentation t} such that (cy,t;) =
(ch, ty) =4 (c3,13) is consistent.

Proor SKETcH. If one of 0; and o; is neither load nor store, or if both of them are loads, they
can trivially commute with the same result. Otherwise, one of 0; and o is a store operator (without
loss of generality, assume o is a store). For i € {1, 2}, let /; be the memory location accessed by o;
and p; be the sum of 0;’s input permissions. Since they can both fire at ¢, they should have suitable
permissions: write l; < p; and read l; < p,. Since p; and p, are disjoint, we have l; # [, Therefore,
they are accessing different memory locations, and should give the same result no matter in which
order we execute them.]

From this commutativity property, we can deduce a “bounded confluence” result, which says that
any other trace 7 will converge to the consistent trace if 7 does not use more operators (counting
multiplicity) than the consistent trace.

THEOREM 2 (BOUNDED CONFLUENCE). Let (c1,t;) —>§; e —>gg‘ (Cns1s tns1) be a consistent trace.
A —>Z% . —>gi" c,,., be another trace. If we have the multiset inclusion {o;, N N
{01,...,0n}, thenc, | = Cntl-

o]
Let cq —4 €

From this, we show that if a consistent trace is terminating, then the initial configuration of the
consistent trace is strongly normalizing in the following sense.

THEOREM 3 (CONSISTENT WEAK NORMALIZATION = STRONG NORMALIZATION). Let (cy,t7) —>§}
. —>Z'f’ (cn+1s the1) be a consistent trace such that cpy1 is a final configuration. Then there is no
0

oy 0},
af €2 ar T Tdr

/

) ’
Ty Withc

¢ m+1

infinite trace from cq, and ifc; — final, thenc], | = cpy1.

In general term rewriting systems, weak normalization and confluence do not necessarily imply
strong normalization. However, in our case, consistency is stronger than confluence and allows us
to arbitrarily commute operators, leading to strong normalization.

Although we have omitted many technical details, we have formalized a machine-checkable
proof of the results in this subsection in Verus [Lattuada et al. 2023], a verification language, and
the proof can be found in our GitHub repository [Lin et al. 2024a].

Practically, with the bounded confluence theorem, we can do bounded model checking for the
confluence property: we perform symbolic execution to obtain a trace of symbolic configurations
c1(x) —>§; e —>§§ ¢n+1(x), and then we can solve for a consistent augmentation (g, ..., t,41) for
this trace using an SMT solver. If there is a solution, then it follows from Theorem 2 that any other
trace (firing operators only in the multiset {oy, ..., 0,}, counting multiplicity) would still converge
to ¢pe1(x) in the end.

5.2 Consistency Check for the Canonical Schedule using Cut Points

We showed in Section 5.1 that a consistent trace has good properties such as bounded confluence
(Theorem 2) and strong normalization (Theorem 3). In order to apply this technique to equivalence
checking, we need to verify that the canonical schedule developed in Section 4 is consistent.
Since the canonical schedule can be unbounded or even infinite, naively solving for consistent
permission augmentations would not work. Instead, we use the cut points selected in Section 4 to
solve and prove a consistent pattern of permission augmentations for all traces in the canonical

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:17

Algorithm 1 Full consistency checking algorithm (Section 5.2).

Require: Inputs:
° céf(xl), <o e (x"): a list of dataflow cut points;
o P(L,k): a permission algebra.

Ensure: If CoNsISTENCYCHECK succeeds, then any trace in the canonical schedule of the dataflow
program is consistent.

1: procedure CONSISTENCYCHECK
2 YT > Permission constraints to be accumulated.
3 forie{1,...,n}do > Initialize permission variables at cut points
4 t; « empty_map() > t; : EXN — PV (Definition 9)
5: for each channel e and m € {1,..., |Channel(ci.(x'), e)|} do
6 ti(e,m) « fresh_variable()
7 ¥ «— ¢ A disjoint(t;(e, m) for all e, m) > Definition 10
8 forie{1,...,n} do
9 Q < empty_queue()

10: enqueue(Q, (ci(x), 1))

11: while Q is non-empty do

12: (car(x'), t) < dequeue(Q)

13: for (¢} (x),t') € step_canonical(cgs(x'),) do > For each symbolic branch
14: > Constraints in Definition 11, where o is the fired operator.

15: Pin < sum of 0’s input permission variables in ¢

16: Pout < sum of 0’s output permission variables in ¢’

17: ¢ — ¢ A (pout < Pin)

18: if 0 reads memory location / € L then

19: Y —yA(readl < py)

20: else if o writes to memory location / € L then

21: Y — Y A (write]l < pin)

22: for je {1,...,n} do _

23: if do:x/ — V(x). c"if(xi) = céf(a) then > Matched to a cut point

24: for each channel eand m € {1, ..., |Channel(c£f(xj), e)|} do

25: VYAt (e,m)=tj(e,m))

26: continue Line 13

27: enqueue(Q, (cj:(x), 1))

28: succeed iff i is satisfiable in P(L, k)

schedule. Intuitively, this involves performing symbolic execution from each cut point with symbolic
permissions.

Let PL,...,P" be a list of cut points from the cut-simulation check (Section 4.3), where each
Pl = (céf(xi), céeq(yi)) | ¢’ (x',y") is a pair of symbolic dataflow and Seq configurations with an
additional correspondence constraint. During the cut-simulation check in Section 4.3, we verify that
starting from any dataflow cut point céf(xi), any symbolic execution branch reaches an instance of

another cut point céf(xj). A consequence is that the symbolic branches from all dataflow cut points

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

289:18 Zhengyao Lin, Joshua Gancher, and Bryan Parno

“cover” any complete trace in the canonical schedule (Definition 3). In other words, any complete
concrete trace in the canonical schedule is the concatenation of instances of symbolic branches.

Thus, if we are able to find a consistent permission augmentation for the trace of each dataflow
symbolic branch during the cut-simulation check, then any concrete, complete trace in the canonical
schedule would have a consistent permission augmentation.

This full consistency check algorithm is procedurally described in Algorithm 1. The algorithm is
parameterized with a list of dataflow cut points céf(xl), ..., ch(x") and a predetermined permission
algebra P(L, k). The algorithm first generates a fresh permission variable for each value present in
the channels of the dataflow cut points. Then it performs symbolic execution from each cut point,
carrying constraints for both symbolic values and their corresponding permission variables, until
the symbolic branch is subsumed by another cut point. In the end, it checks for the satisfiability of
the permission constraints. If they are satisfiable, the consistency of the full program follows.

In more detail, the first loop at Line 3 assigns fresh permission variables to each value present in
each cut point, representing an unknown concrete permission token to be solved for. We also add
disjointness constraints at Line 7 to enforce that these permission augmentations are consistent
(Definition 10) at the corresponding cut point configurations.

Then in the main loop at Line 8, we symbolically execute from each dataflow cut point, trying
to match each symbolic branch against other cut points. The step function step_canonical uses
a deterministic canonical schedule (Definition 3) we constructed from Seq execution traces. For
example, in the case of LLVM and RipTide, we use the canonical schedule described in Section 4.
step_canonical is also instrumented to take a permission augmentation ¢ for the current configu-
ration cg¢(x?), and output a modified permission augmentation ¢’ for the stepped configuration
céf(xi), in which fresh variables are generated for all new output values in céf(xi), and permissions
corresponding to input values are removed. In each step, for each symbolic branch, we also accu-
mulate permission constraints (Lines 14-21) to enforce that the augmented transition (cg¢(x’), t) to
(c(’if(xi), t’) is a consistent transition (Definition 11).

At each symbolic step, we check if a symbolic branch is matched to another cut point céf(xj)
(Line 23). This check is performed by finding a substitution o : y/ — Terms(x’) such that the
current symbolic branch cl’if(xi) = céf(a). If the symbolic branch matches the cut point, we add
equality constraints (Line 25) to enforce that the permissions in ¢’ should converge back to the
original permissions ¢; at the matched j-th cut point. Note that the substitution o is not later used
because we do not need to check correspondence constraints (Section 4.3).

The main loop at Line 8 should terminate, because if the cut-simulation check (Section 4) passes,
any branch from any dataflow cut point should eventually match another cut point.

Finally, we check if the accumulated permission constraint ¢ is satisfiable in the permission
algebra P(L, k) via an SMT query. If i/ is satisfiable, then any concrete trace in the canonical schedule
is consistent.

5.3 Putting It All Together

We have formulated two checks: the simulation check in Section 4.3, which verifies a simulation
between the dataflow program restricted to a canonical schedule and the Seq program; and the
consistency check in Section 5.2, which proves that the canonical schedule has a consistent assign-
ment of affine permission tokens. In this section, we show how these two checks imply the full
equivalence defined in Definition 2, with certain assumptions on the Seq program.

We first define a canonical schedule Canon to be consistent if every trace in it is consistent.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:19

Definition 13 (Consistent Canonical Schedule). A canonical schedule Canon is consistent iff for
any corresponding initial states cqr ~7 cseq With Mem(cgr) = Mem(cseq), and any complete trace
Tseq = Cseq - - - » the canonical trace Canon(cqr, Teeq) is consistent.

If the Seq program is terminating (i.e., for any cseq € Zseq, Cseq has a terminating trace), then we
obtain the full equivalence between the dataflow and Seq programs by the following.

Proposition 1 (Equivalence for Terminating Seq Programs). Let Canon be some consistent canoni-
cal schedule. If the transition systems (Zg¢, Car, —af) and (Zseq, Cseq» —>seq) are equivalent on Canon,
and (Zgeq, Cseq» —>seq) is terminating, then (Zgr, Cap, —df) and (Zgeq, Cseq» —>seq) are equivalent (Defi-
nition 2).

PROOF. Let c4r ~7 Cseq be any pair of corresponding initial states with Mem(cgr) = Mem(cgeq).
Let 74r = cqr . .. be any complete trace from cgr, and let 7geq = Cseq - - . be the unique complete trace.

Since (Zseq, Cseq» —seq) is terminating, the complete trace Teeq = Cseq - - - cgeq is finite with some
final configuration cgeq. By equivalence on Canon, the canonical trace Canon(cdf, Tseq) = Cdf - - - €
is finite with some final caf, and Mem(c(’if) = Mem(c;eq). Then by Theorem 3, 7g¢ = cgf . .. c&’f
is also finite with final state cjj; = c};;. Therefore, Mem(cj;) = Mem(cg,), and 74 and 7seq are
memory-synchronizing. ml

For non-terminating Seq programs, additional assumptions about the canonical schedule are
required. For example, a non-terminating canonical schedule may leave a fireable operator o starved
forever, and an alternative schedule firing 0 would never satisfy the multiset inclusion assumption
of Theorem 2.

This issue can be addressed by assuming that the canonical schedule is fair; i.e., it does not
indefinitely starve any fireable operator.

cpe . S | o1 .. 0; i+l 0i+1
Definition 14 (Fair Trace). A complete dataflow trace zar = cge — 4 = Cof 4t

then there is some j > i such that 0; = o.

. is fair
iff for any i € N, if an operator o is fireable in céf,
Definition 15 (Fair Canonical Schedule). A canonical schedule Canon is fair iff for any correspond-
ing initial states cgr ~7 Cgeq With Mem(cgr) = Mem(cseq), and any complete trace Toeq = Cseq - - -5

the canonical trace Canon(cqp, Tseq) is fair.

Assuming the fairness of the canonical schedule, we can obtain full equivalence for non-
terminating programs.

Proposition 2 (Equivalence for Non-terminating Seq Programs). Let Canon be some consistent
canonical schedule. If the transition systems (Zgt, Car, —dr) and (Zseq, Cseqs —seq) are equivalent on
Canon, and Canon is fair, then (Zgf, Cyr, —dr) and (Zseq, Ceqs —seq) are equivalent (Definition 2).

PrOOF. Let céf ~7 c;eq be any pair of corresponding initial states with Mem(céf) = Mem(cL,)-

seq
— 1 o1 .. 0i i+l Oi+1 1 N |
Let 74r = C gt —uf Cqr —af --- be any complete trace from cy.. Let 7eeq = Ceq seq
* =seq cﬁeq —seq - - - be the unique complete trace from csleq.
By equivalence on Canon, Canon(c(llf, Tseq) and Tgeq are memory-synchronizing. If 74 is finite,

we can conclude by the same reasoning in Proposition 1. So without loss of generality, we assume
that 7,q and Canon(c}lf, Tseq) are both infinite.

Let i,j € N. Let oy, . . .,0; be operators fired in 74 in the first i steps to reach an intermediate
configuration cé‘gl. We want to show that c(’;;l and cgeq can reach some pair of configurations with

the same memory state.

. , , o o .
By the fairness of Canon(céf, Tseq) = C(llf —>Z; dgf —>3§ e —>d’fc dgf“ —>d’f‘+1 ..., there is some
k € N such that multiset inclusion {01, ..., 0;} € {o],..., o,’c} holds (i.e., 01, . . ., 0; must be eventually

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

289:20 Zhengyao Lin, Joshua Gancher, and Bryan Parno
fired in the canonical schedule due to fairness). By Theorem 2, c(’;l —>3f dgf“. By Canon(c(llf, Tseq)
. .. . L . R
and 7eq being memory-synchronizing, there are some configurations ¢, c;.q with Mem(cy,) =

’ k+1 * J * ’ i+1 * gk+1 EE .
Mem(cq), such that i —7% cip, and cieq —5eq Ceeq- Therefore, i’ —7%c di™ —5 ¢/ This holds

for any i, j, so 7¢4r and 7,.q are memory-synchronizing. O

Intuitively, we need the termination or fairness condition due to situations such as the following.
Suppose we have a Seq program with two sequentially composed loops L;; L,. The canonical
schedule will wait for L; to finish before starting L, since it follows the semantics of Seq. However,
the compiler may choose to parallelize L; and L, if they do not access the same memory region.
This will result in a potentially non-equivalent program L; || L, (|| denotes parallel composition) if
L, is non-terminating and L, modifies some disjoint memory location.

If we assume termination, then L; and L, must terminate, so we can get the stronger result
that L;; Ly and Lq||L; both terminate with the same memory configuration by Proposition 1. If we
assume fairness, then L; must be terminating (because we cannot starve operators in L, in the
canonical schedule), but L, may be non-terminating, in which case we still obtain a weaker memory
synchronizing result by Proposition 2.

Fairness of the canonical schedule can be reduced to checking that the Seq program does not
leave any part of the code unreachable, which can also be done by checking termination. In our
work, we do not verify the termination of the source Seq program, but there is orthogonal work
that can address this problem [Cook et al. 2006].

5.3.1 Liveness in the Bounded-Channel Model. In our current semantics for dataflow programs,
channels between operators are modeled as unbounded queues. In real CGRA architectures, however,
the channels have a fixed buffer size, and an operator may block if one of the output channels is
full. As a result, a dataflow program in the bounded-channel model may have a deadlock that is not
possible in the unbounded-channel model.

For example, consider Figure 7, where operator A has two dataflow paths to B: one path is full,
while the other is empty due to a Steer operator T discarding its inputs. This situation puts us in
deadlock. Operator B cannot fire without tokens along both paths, while operator A cannot fire
before more space is made along the full path.

To verify that this scenario does not occur, we lift our cut-simulation and consistency results in
the unbounded-channel model to the bounded-channel model via two observations:

e The symbolic branches in the dataflow cut point execution (Section 4.3) have finitely many
intermediate symbolic configurations, so the maximum channel size is bounded by some
integer K in the canonical schedule.

e The consistency results in Section 5.1 and Section 5.2 are still valid in the bounded-channel
model, which we have formalized and verified in Verus as well.

Therefore, if the cut-simulation and the consistency checks pass in the unbounded-channel model,
the same results hold in the bounded-channel model if channels have a buffer size of at least K.
As a result, in the bounded-channel model, the dataflow program is still equivalent to the input
imperative program, which guarantees the liveness property of the dataflow program that it will
always make progress if the sequential imperative program is able to make progress. Furthermore,
since the sequential program is deadlock-free, the dataflow program is also deadlock-free.

6 Implementation and Evaluation

We have implemented our translation validation technique in the tool FlowCert [Lin et al. 2024a]
targeting the RipTide compiler from LLVM programs to dataflow programs. We first implemented
symbolic executors for (a subset of) LLVM and dataflow programs in Python. Based on these, we

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:21

Name LOC #0OP #PC Sim. Conf. Description

nn_vadd 5 15 244 0.02 0.17 Vector addition (RipTide)
nn_norm 10 19 316 0.02 0.19 Neural network normalization (RipTide)
nn_relu 11 19 844 0.03 0.45 Neural network ReLU layer (RipTide)

smv 12 25 1103 0.05 2.27 Sparse-dense matrix-vector mult. (Pipestitch)
dmv 10 31 1234 0.06 1.64 Dense-dense matrix-vector mult. (RipTide)
Dither 19 31 2553 0.13 2.29 Dithering (Pipestitch)

SpSlice 30 31 2616 X 0.13 7.94 Sparse matrix slicing (Pipestitch)

nn_fc 23 36 2632 0.09 3.35 Neural network FC layer (RipTide)

SpMSpVvd 45 40 3182 0.15 8.38 Sparse-sparse matrix-vector mult. (Pipestitch)
bfs 48 48 3634 0.15 7.68 Breadth-first search (RipTide)

dfs 45 49 3762 0.17 7.76 Depth-first search (RipTide)

smm 22 49 3967 0.16 11.2 Sparse-dense matrix mult. (RipTide)

nn_pool 32 52 8165 0.23 7.14 Neural network pooling layer (RipTide)

dmm 16 56 4220 0.19 6.16 Dense-dense matrix mult. (RipTide)

sconv 22 56 4272 0.2 10.37 Sparse convolution (RipTide)

sort 23 57 6554 x0.14 3.31 Radix sort (RipTide)

SpMSpMd 39 60 7693 0.33 26.68 Sparse-sparse matrix mult. (Pipestitch)
nn_conv 42 61 12154 0.2 1532 Neural network convolution layer (RipTide)
dconv 24 65 8134 0.25 11.51 Dense convolution (RipTide)

fft 29 70 2690 0.12 5.77 Fast Fourier transform (RipTide)

sha256 81 181 3548 X 0.28 12.6 SHA-256 hash

Fig. 5. Evaluation results on 21 test cases sorted by the number of dataflow operators. From left to right,
the columns are the name of the test case (Name), lines of code in the original C program (LOC), number
of dataflow operators (#OP), number of permission constraints (#PC), time spent for simulation check in
seconds (Sim.), and time spent for consistency check in seconds (Conf.). All test cases are originally written in
C and then compiled to LLVM via Clang [LLVM 2024a]. Compiler bugs cause the simulation checks to fail in
SpSlice, sort, and sha256. In all other cases, the simulation and consistency checks succeed.

implemented the cut-simulation check described in Section 4 and the consistency check in Section 5.
We also instrumented the RipTide compiler to output hints for constructing the canonical schedule
(Section 4).

FlowCert uses the Z3 SMT solver [De Moura and Bjerner 2008] to discharge the verification
conditions it generates. In the simulation check, FlowCert encodes feasibility of path conditions and
validity of the correspondence conditions at each cut point into Z3 queries. In the consistency check,
FlowCert produces a list of permission constraints and checks if these constraints are satisfiable
with respect to the finite permission algebra (Definition 7) by encoding each permission variable as
a set of Boolean variables and the list of permission constraints as an SMT query.

In order to evaluate FlowCert’s capability to certify compilation to real dataflow programs, we
have applied FlowCert to a benchmark of 21 programs consisting of the benchmark programs
in RipTide [Gobieski et al. 2023] and Pipestitch [Serafin et al. 2023], as well as some programs
implementing neural network inference and an implementation of SHA-256 [Conte 2024]. Figure 5
shows some statistics about the benchmark programs and how FlowCert performs. All tests are
performed on a laptop with an Apple M1 processor and 64 GiB of RAM. The time spent in the
RipTide compiler (including hint generation) is less than 0.1 seconds for all of the benchmark
programs, so it is omitted from the table.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

289:22 Zhengyao Lin, Joshua Gancher, and Bryan Parno

$xor = xor il %b, 1 {
$conv = zext il %xor to i32 — a e
\

store i32 %conv, i32* %A
@ Empty L
-
for (int i = 0; i < n; i++) { Full
ALl = i;
for (int j = 1 + 1; AN
J o< mi g+ : Empty
A[§] = A[§ - 11; @
} &)
Fig. 6. Examples of two compiler bugs. Fig. 7. Deadlock example.

Both simulation and consistency checks pass for most of the benchmark programs. This shows
that our heuristics for inferring dataflow cut points work well on the canonical schedule, and our
consistency check is general enough for common compilation patterns. In test cases sort, SpSlice,
and sha256, the simulation check fails and correctly reveals two compilation bugs (see Section 6.1
for more detail). After fixing these bugs, the simulation and consistency checks succeed for these
two programs.

FlowCert spends most of its time on the consistency check, mainly consisting of checking
satisfiability for permission constraints. The simulation check takes a relatively short amount
of time, because the input LLVM program and the output dataflow program match well on the
canonical schedule and thus the verification conditions are simple to solve. Overall, the verification
time is within 15 seconds for most benchmark programs, and we believe it is feasible to enable
FlowCert in real production scenarios.

In terms of implementation effort, FlowCert is implemented in 3,121 lines of Python with three
main components: ~800 lines of dataflow semantics; ~1,000 lines of LLVM semantics; and ~750 lines
for simulation and consistency checks. The instrumented hint generation in the RipTide compiler
is implemented in less than 50 lines of C++. Compared to the RipTide compiler itself, which has
~21,000 lines of C++ code, we argue that it is manageable to maintain FlowCert alongside the
compiler to provide higher assurance for the correctness of compilation.

6.1 Compiler Bugs

While testing FlowCert, we found 8 bugs in the RipTide compiler, confirmed by RipTide authors.
Four of these bugs were discovered on the test cases sort, SpSplice, sha256, and their variations;
and the remaining four bugs were found on test cases not included in the evaluation. We now
discuss two representative bugs:

Incorrect signed extension. FlowCert found a compilation bug involving integer signed vs. un-
signed extension in the sort test case. A simplified LLVM program used to reproduce this issue is
shown in the top left of Figure 6, and the output dataflow program is shown in the top right of
Figure 6. The LLVM code performs a 1-bit xor with a 1-bit constant 1, and it zero-extends the result
to a 32-bit integer. On the dataflow side, the dataflow compiler converted all operations into 32-bits
(word length of RipTide). However, during the process, the compiler assumes that all constants
should be sign-extended. As a result, it extends the 1-bit 1 to a 32-bit -1, which is incorrect in this
case. This difference causes our simulation check to fail, as the final memory states fail to match.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:23

Incorrect memory ordering with potential data races. Our consistency check catches a compilation
bug when compiling from the C program shown in the bottom left of Figure 6 to the dataflow
program in the bottom right of Figure 6. The C program has a nested loop. In each iteration of the
outer loop, it first sets A[i] = i, and then in the inner loop that follows, it copies A[i] into A[i +
11,..., Aln - 1].In the output dataflow program, the compiler allows the load and store operators
in the inner loop to pipeline using the invariant operator (marked I) to repeatedly send the signal
to enable load. However, this causes a data race, because in the inner loop, a load in the second
iteration accesses the same memory location as the store in the first iteration.

The consistency check fails as the generated permission constraints are unsatisfiable. FlowCert
also outputs an unsat core of 57 constraints, a subset of the 420 constraints generated, that causes
the unsatisfiability. In particular, the unsat core includes two constraints: read A is in the input
tokens of the inner loop load, and write A is in the input tokens of the inner loop store. This
indicates that the main conflict stems from these two operators.

7 Limitations and Future Work

Our translation validation technique still has some limitations to address in future work.

Optimized dataflow graphs. Our technique may fail on more optimized programs. The RipTide
compiler employs some optimizations currently not supported by FlowCert:

e Deduplication of operators, which combines arithmetic operators with the same inputs.

e Streamification, which uses a single stream operator to generate a loop induction variable (as
opposed to using, e.g., carry, comparison, and addition operators).

e Array dependency analysis, which removes unnecessary orderings between loads and stores
across iterations that access different indices of an array.

The first two optimizations are not supported by our simulation check because we require a
one-to-one correspondence between LLVM instructions and dataflow operators for the canonical
schedule. Since these optimizations involve reasoning about the equivalence between dataflow
programs, we believe that a modular approach is to use FlowCert to verify the input LLVM against
the unoptimized dataflow program, and use another verification pass in future work to soundly
optimize the dataflow program.

The third optimization may lead to a dataflow program failing our consistency check. To solve
this, we need finer granularity in permission tokens. Currently, the read and write permissions
are for the entire memory region, such as an array A. To allow memory operations on A[i] and
A[i + 1] to run in parallel, where i is the loop induction variable, we need to re-formulate the
permission algebra to allow slices of a permission token on a specific range of indices. This also
requires a form of “dependent” permission tokens that can depend on the values in the channels.

Scalability of the consistency check. FlowCert currently spends most of its time on the consistency
check (Section 6). We believe this is primarily due to a naive encoding of permission constraints
in SMT. For better performance in future work, one could design a custom solver for permission
constraints to better utilize the structure of a permission algebra, or use a preprocessing step to
simplify permission constraints.

Lack of architecture-specific details. This work targets the compilation from imperative programs
to an abstract version of dataflow programs. While our technique can ensure the correctness of
this pass, we do not verify later passes, such as the procedure to optimally configure the dataflow
program on the actual hardware.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

289:24 Zhengyao Lin, Joshua Gancher, and Bryan Parno

8 Related Work

As a compiler verification technique, the translation validation approach taken in our work is
a less labor-intensive alternative to full compiler verification, such as CompCert [Leroy 2009].
Translation validation was first proposed by Pnueli et al. [1998], and there are numerous following
works with novel translation validation or program equivalence checking techniques for various
languages and compilers [Kundu et al. 2009; Necula 2000; Sharma et al. 2013; Tate et al. 2009].
For LLVM-related works on translation validation, we have Alive [Lopes et al. 2021, 2015], which
performs bounded translation validation for internal optimizations in LLVM. LLVM-MD [Govereau
2012; Tristan et al. 2011] is another translation validation tool for LLVM optimizations. LLVM-MD
translates the LLVM code into an intermediate representation called synchronous value graphs
(SVG) [Govereau 2012], which is a similar representation to a dataflow program. The main difference
is that SVGs have a synchronous semantics for sending/receiving values, and they also trust the
compilation from LLVM to SVG, whereas in our case, such translation is exactly what we are
trying to validate. Our formulation of cut-simulation in our simulation check is an adaptation from
the work on KeQ [Kasampalis et al. 2021], which aims to be a more general program equivalence
checker parametric in the operational semantics of input/output languages.

Our use of affine permission tokens is a dynamic variant of the fractional permissions proposed
by Boyland [Boyland 2013] and used in various separation logics [Brookes 2006] to reason about
read-only sharing of references. Tools based on separation logics such as Iris [Jung et al. 2015] and
Viper [Miiller et al. 2016] usually require manual annotations for permission passing in the pre-
/post-conditions, whereas our permission tokens are synthesized fully automatically. Furthermore,
separation logic is not a suitable formalism to directly reason about dataflow programs due to the
lack of structured control-flow in a dataflow program and the asynchrony of dataflow operators.

Various models of dataflow programming [Johnston et al. 2004] have been studied, and the
dataflow model in this work is similar to Kahn process networks (KPN) [Gilles 1974]. In a KPN,
parallel processes are connected together via unbounded, asynchronous FIFO channels. KPNs have
the property of determinism: the streams of values observed in channels are independent of the
schedule or timing of executing the processes. However, this property is not satisfied by our model
due to the existence of the shared memory and potential data races.

Most verification work for dataflow, such as [Bouali 1998; Bourke et al. 2017; Champion et al.
2016; Hagen and Tinelli 2008], is focused on synchronous dataflow [Lee and Messerschmitt 1987],
where a dataflow operator cannot dynamically determine the number of values sent to/received
from each channel. Our dataflow model presents challenges not covered in these works as some
of our operators do not belong to synchronous dataflow (e.g., carry in Section 2). Furthermore,
dataflow programs used by CGRA compilers often make use of shared global memory, which
requires stronger techniques for guaranteeing determinism.

Process calculi such as CSP [Roscoe 1997] and 7-calculus [Milner 1999] present an alternative
formalism for message-passing concurrency. To manage the inherent complexity and nondetermin-
ism in process calculi, session types can enforce confluence and deadlock-freedom by construc-
tion [Honda 1993; Sangiorgi and Walker 2001]. However, similar to separation logic, session types
require manual typing annotations that would be difficult to synthesize automatically, and we likely
still need some form of fractional permissions to handle shared memory.

Our strategy for analyzing nondeterministic dataflow programs is reminiscent of verification
strategies for distributed systems [Bakst et al. 2017; Kragl et al. 2020; v. Gleissenthall et al. 2019]
which analyze message-passing protocols (e.g., Paxos [Lamport 2001]) via reductions to sequential
programs. However, the dataflow domain requires significantly different techniques: we verify

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 289. Publication date: October 2024.

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:25

equivalence properties with arbitrary specification programs, and use affine permissions to enable
safe memory accesses in the presence of asynchrony.

In our work, we use the consistency check to ensure that the dataflow program is confluent.
In the context of term rewriting systems [Baader and Nipkow 1998], the standard approach for
checking confluence is the use of critical pairs [Duran et al. 2020; Knuth and Bendix 1970], which
proves ground confluence in the case when the rewriting system is terminating. This algorithm is
implemented in various systems, such as the Church-Rosser checker in Maude [Clavel et al. 2002].
However, this technique is difficult to apply in our case, since the semantics of a dataflow program
is neither terminating nor, in general, ground confluent.

9 Conclusion

In this work, we develop a technique for translation validation between imperative source programs
and asynchronous dataflow target programs, with an implementation for the RipTide CGRA
architecture. Our technique simplifies analysis on dataflow by first verifying that the target program
simulates the source program along a canonical schedule, and then using affine memory permissions
to show that this canonical schedule is general. Our verification procedure ensures both functional
correctness and liveness for the target dataflow program.

In future work, we aim to support optimizations on dataflow programs (e.g., special-purpose op-
erators for pipelining loops), and extending our verification methodology to concrete instantiations
of CGRAs in hardware.

Data-Availability Statement

The software that supports Sections 5 and 6 is available at Zenodo [Lin et al. 2024b] as a Docker
image. The source code of our implementation can also be found in our GitHub repository [Lin
et al. 2024a].

Acknowledgments

We thank Nathan Serafin and Souradip Ghosh for their guidance on the RipTide architecture and
compiler. We thank the anonymous reviewers, Brandon Lucia, Nathan Beckmann, and Pratap Singh
for their valuable feedback on drafts of this paper. This work was supported, in part, by NSF grant
number CCF-2403144 and a gift from VMware.

References

Ackerman. 1982. Data Flow Languages. Computer 15, 2 (1982), 15-25. https://doi.org/10.1109/MC.1982.1653938

Arvind and David E. Culler. 1986. Dataflow Architectures. Annual Reviews Inc., USA, 225-253.

Franz Baader and Tobias Nipkow. 1998. Term Rewriting and All That. Cambridge University Press, UK. https://doi.org/10.
1017/CBO9781139172752

Alexander Bakst, Klaus v. Gleissenthall, Rami Gékhan Kici, and Ranjit Jhala. 2017. Verifying distributed programs via
canonical sequentialization. Proc. ACM Program. Lang. 1, OOPSLA, Article 110 (oct 2017), 27 pages. https://doi.org/10.
1145/3133934

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of Symbolic
Execution Techniques. ACM Comput. Surv. 51, 3, Article 50 (may 2018), 39 pages. https://doi.org/10.1145/3182657

Amar Bouali. 1998. Xeve, an Esterel verification environment. In Computer Aided Verification, Alan J. Hu and Moshe Y. Vardi
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 500-504. https://doi.org/10.1007/BFb0028770

Timothy Bourke, Lélio Brun, Pierre-Evariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel Rieg. 2017. A Formally
Verified Compiler for Lustre. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA, 586-601.
https://doi.org/10.1145/3062341.3062358

John Boyland. 2013. Fractional Permissions. Springer Berlin Heidelberg, Berlin, Heidelberg, 270-288. https://doi.org/10.
1007/978-3-642-36946-9_10

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

https://doi.org/10.1109/MC.1982.1653938
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1145/3133934
https://doi.org/10.1145/3133934
https://doi.org/10.1145/3182657
https://doi.org/10.1007/BFb0028770
https://doi.org/10.1145/3062341.3062358
https://doi.org/10.1007/978-3-642-36946-9_10
https://doi.org/10.1007/978-3-642-36946-9_10

289:26 Zhengyao Lin, Joshua Gancher, and Bryan Parno

Stephen Brookes. 2006. Variables as Resource for Shared-Memory Programs: Semantics and Soundness. Electronic Notes in
Theoretical Computer Science 158 (2006), 123-150. https://doi.org/10.1016/j.entcs.2006.04.008 Proceedings of the 22nd
Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXII).

Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. 2016. The Kind 2 Model Checker. In Computer
Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing, Cham, 510-517.
https://doi.org/10.1007/978-3-319-41540-6_29

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J.F. Quesada. 2002. Maude: Specification and
programming in rewriting logic. Theoretical Computer Science 285, 2 (2002), 187-243. https://doi.org/10.1016/S0304-
3975(01)00359-0 Rewriting Logic and its Applications.

Brad Conte. 2024. Basic implementations of standard cryptography algorithms. https://github.com/B-Con/crypto-
algorithms.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. Termination proofs for systems code. In Proceedings of the
27th ACM SIGPLAN Conference on Programming Language Design and Implementation (Ottawa, Ontario, Canada) (PLDI
’06). Association for Computing Machinery, New York, NY, USA, 415-426. https://doi.org/10.1145/1133981.1134029

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS 08/ETAPS 08). Springer-Verlag, Berlin, Heidelberg, 337-340. https://doi.org/10.1007/978-3-540-78800-
3_24

Jack B. Dennis and David P. Misunas. 1974. A Preliminary Architecture for a Basic Data-Flow Processor. In Proceedings of
the 2nd Annual Symposium on Computer Architecture (ISCA °75). Association for Computing Machinery, New York, NY,
USA, 126-132. https://doi.org/10.1145/642089.642111

Francisco Duran, Jose Meseguer, and Camilo Rocha. 2020. Ground confluence of order-sorted conditional specifications
modulo axioms. Journal of Logical and Algebraic Methods in Programming 111 (2020), 100513. https://doi.org/10.1016/].
jlamp.2019.100513

Kahn Gilles. 1974. The semantics of a simple language for parallel programming. Information processing 74, 471-475 (1974),
15-28.

Graham Gobieski, Ahmet Oguz Atli, Kenneth Mai, Brandon Lucia, and Nathan Beckmann. 2021. Snafu: an ultra-low-
power, energy-minimal CGRA-generation framework and architecture. In Proceedings of the 48th Annual International
Symposium on Computer Architecture (Virtual Event, Spain) (ISCA "21). IEEE Press, New York, NY, USA, 1027-1040.
https://doi.org/10.1109/ISCA52012.2021.00084

Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony Nowatzki, Nathan Beckmann, and Brandon Lucia.
2023. RipTide: A Programmable, Energy-Minimal Dataflow Compiler and Architecture. In Proceedings of the 55th Annual
IEEE/ACM International Symposium on Microarchitecture (Chicago, Illinois, USA) (MICRO ’22). IEEE Press, New York, NY,
USA, 546-564. https://doi.org/10.1109/MICRO56248.2022.00046

S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and RR. Taylor. 2000. PipeRench: A reconfigurable architecture
and compiler. Computer 33, 4 (2000), 70-77. https://doi.org/10.1109/2.839324

Paul Govereau. 2012. Denotational Translation Validation. Ph. D. Dissertation. Harvard University, USA. Advisor(s) Morrisett,
John G. AAI3495610.

George Hagen and Cesare Tinelli. 2008. Scaling Up the Formal Verification of Lustre Programs with SMT-Based Techniques.
In 2008 Formal Methods in Computer-Aided Design. IEEE Press, USA, 1-9. https://doi.org/10.1109/FMCAD.2008.ECP.19

Kohei Honda. 1993. Types for dyadic interaction. In CONCUR’93, Eike Best (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 509-523. https://doi.org/10.1007/3-540-57208-2_35

Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. 2004. Advances in dataflow programming languages. ACM
Comput. Surv. 36, 1 (mar 2004), 1-34. https://doi.org/10.1145/1013208.1013209

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. SIGPLAN Not. 50, 1 (jan 2015), 637-650.
https://doi.org/10.1145/2775051.2676980

Richard M. Karp and Rayamond E. Miller. 1966. Properties of a Model for Parallel Computations: Determi-
nacy, Termination, Queueing. SIAM J Appl. Math. 14, 6 (1966), 1390-1411. https://doi.org/10.1137/0114108
arXiv:https://doi.org/10.1137/0114108

Theodoros Kasampalis, Daejun Park, Zhengyao Lin, Vikram S. Adve, and Grigore Rosu. 2021. Language-Parametric Compiler
Validation with Application to LLVM. In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Machinery,
New York, NY, USA, 1004-1019. https://doi.org/10.1145/3445814.3446751

Donald E. Knuth and Peter B. Bendix. 1970. Simple Word Problems in Universal Algebras. In Computational Problems in
Abstract Algebra. Pergamon, Oxford, UK, 263-297. https://doi.org/10.1016/B978-0-08-012975-4.50028-X

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

https://doi.org/10.1016/j.entcs.2006.04.008
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1016/S0304-3975(01)00359-0
https://github.com/B-Con/crypto-algorithms
https://github.com/B-Con/crypto-algorithms
https://doi.org/10.1145/1133981.1134029
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/642089.642111
https://doi.org/10.1016/j.jlamp.2019.100513
https://doi.org/10.1016/j.jlamp.2019.100513
https://doi.org/10.1109/ISCA52012.2021.00084
https://doi.org/10.1109/MICRO56248.2022.00046
https://doi.org/10.1109/2.839324
https://doi.org/10.1109/FMCAD.2008.ECP.19
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/1013208.1013209
https://doi.org/10.1145/2775051.2676980
https://doi.org/10.1137/0114108
https://arxiv.org/abs/https://doi.org/10.1137/0114108
https://doi.org/10.1145/3445814.3446751
https://doi.org/10.1016/B978-0-08-012975-4.50028-X

FlowCert: Translation Validation for Asynchronous Dataflow via Dynamic Fractional Permissions 289:27

Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and Shaz Qadeer. 2020. Inductive
sequentialization of asynchronous programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 227-242. https://doi.org/10.1145/3385412.3385980

Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. 2009. Proving Optimizations Correct Using Parameterized Program
Equivalence. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Dublin, Ireland) (PLDI ’09). Association for Computing Machinery, New York, NY, USA, 327-337. https://doi.org/10.
1145/1542476.1542513

Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News (Distributed Computing Column) 4, 32 (December 2001),
51-58. https://www.microsoft.com/en-us/research/publication/paxos-made-simple/

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.
In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization (Palo Alto, California) (CGO °04). IEEE Computer Society, USA, 75. https://doi.org/10.1109/CG0O.2004.
1281665

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and
Chris Hawblitzel. 2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc. ACM Program. Lang. 7, OOPSLA1,
Article 85 (apr 2023), 30 pages. https://doi.org/10.1145/3586037

E.A. Lee and D.G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9 (1987), 1235-1245. https://doi.org/10.1109/
PROC.1987.13876

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (jul 2009), 107-115. https://doi.org/10.
1145/1538788.1538814

Zhengyao Lin, Joshua Gancher, and Bryan Parno. 2024a. FlowCert GitHub Repository. https://github.com/secure-
foundations/riptide-verification/tree/oopsla2024-ae.

Zhengyao Lin, Joshua Gancher, and Bryan Parno. 2024b. Translation Validation for Asynchronous Dataflow via Dynamic
Fractional Permissions. Carnegie Mellon University. https://doi.org/10.5281/zenodo.12552491

Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie Han, Shouyi Yin, and Shaojun Wei. 2019. A Survey of
Coarse-Grained Reconfigurable Architecture and Design: Taxonomy, Challenges, and Applications. ACM Comput. Surv.
52, 6, Article 118 (Oct 2019), 39 pages. https://doi.org/10.1145/3357375

LLVM. 2024a. Clang: a C language family frontend for LLVM. https://clang.llvm.org/.

LLVM. 2024b. LLVM Language Reference Manual. https://llvm.org/docs/LangRef html.

Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: Bounded Translation
Validation for LLVM. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (Virtual, Canada) (PLDI 2021). https://doi.org/10.1145/3453483.3454030

Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015. Provably Correct Peephole Optimizations
with Alive. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Portland, OR, USA) (PLDI ’15). https://doi.org/10.1145/2737924.2737965

Robin Milner. 1999. Communicating and Mobile Systems: The -calculus. Cambridge University Press, United States.

Peter Miller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based
Reasoning. In Verification, Model Checking, and Abstract Interpretation, Barbara Jobstmann and K. Rustan M. Leino (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 41-62. https://doi.org/10.1007/978-3-662-49122-5_2

George C. Necula. 2000. Translation Validation for an Optimizing Compiler. In Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation (Vancouver, British Columbia, Canada) (PLDI "00).
Association for Computing Machinery, New York, NY, USA, 83-94. https://doi.org/10.1145/349299.349314

A. Pnueli, M. Siegel, and E. Singerman. 1998. Translation validation. In Tools and Algorithms for the Construction and Analysis
of Systems, Bernhard Steffen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 151-166. https://doi.org/10.1007/
BFb0054170

A. W. Roscoe. 1997. The Theory and Practice of Concurrency. Prentice Hall PTR, USA.

Davide Sangiorgi and David Walker. 2001. PI-Calculus: A Theory of Mobile Processes. Cambridge University Press, USA.

Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann, and Brandon Lucia. 2023. Pipestitch: An energy-minimal
dataflow architecture with lightweight threads. In Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture (Toronto, ON, Canada) (MICRO °23). Association for Computing Machinery, New York, NY, USA,
1409-1422. https://doi.org/10.1145/3613424.3614283

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. 2013. Data-Driven Equivalence Checking. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications
(Indianapolis, Indiana, USA) (OOPSLA ’13). Association for Computing Machinery, New York, NY, USA, 391-406.
https://doi.org/10.1145/2509136.2509509

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1145/1542476.1542513
https://doi.org/10.1145/1542476.1542513
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3586037
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://github.com/secure-foundations/riptide-verification/tree/oopsla2024-ae
https://github.com/secure-foundations/riptide-verification/tree/oopsla2024-ae
https://doi.org/10.5281/zenodo.12552491
https://doi.org/10.1145/3357375
https://clang.llvm.org/
https://llvm.org/docs/LangRef.html
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/349299.349314
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1145/3613424.3614283
https://doi.org/10.1145/2509136.2509509

289:28 Zhengyao Lin, Joshua Gancher, and Bryan Parno

Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. 2003. WaveScalar. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 36). IEEE Computer Society, USA, 291.

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation: A New Approach to Optimization.
In Proceedings of the ACM Symposium on Principles of Programming Languages (POPL "09). Association for Computing
Machinery, New York, NY, USA, 13 pages. https://doi.org/10.1145/1480881.1480915

Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Evaluating Value-Graph Translation Validation for
LLVM. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation
(San Jose, California, USA) (PLDI ’11). Association for Computing Machinery, New York, NY, USA, 295-305. https:
//doi.org/10.1145/1993498.1993533

Klaus v. Gleissenthall, Rami Gékhan Kici, Alexander Bakst, Deian Stefan, and Ranjit Jhala. 2019. Pretend synchrony:
synchronous verification of asynchronous distributed programs. Proc. ACM Program. Lang. 3, POPL, Article 59 (jan 2019),
30 pages. https://doi.org/10.1145/3290372

Fahimeh Yazdanpanah, Carlos Alvarez-Martinez, Daniel Jimenez-Gonzalez, and Yoav Etsion. 2014. Hybrid Dataflow/von-
Neumann Architectures. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2014), 1489-1509. https://doi.org/
10.1109/TPDS.2013.125

Received 2024-04-03; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 289. Publication date: October 2024.

https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/3290372
https://doi.org/10.1109/TPDS.2013.125
https://doi.org/10.1109/TPDS.2013.125

	Abstract
	1 Introduction
	2 Preliminaries: Dataflow Programs, CGRAs, and RipTide
	3 Overview and an Example
	4 Equivalence on a Canonical Schedule via Cut-Simulation
	4.1 Proving Equivalence on the Canonical Schedule via Cut-Simulation
	4.2 Describing a Cut-Simulation via Cut Points
	4.3 Checking Cut-Simulation
	4.4 Heuristics to Infer Cut Points

	5 Verifying Race-Freedom with Affine Permission Tokens
	5.1 Consistent Traces
	5.2 Consistency Check for the Canonical Schedule using Cut Points
	5.3 Putting It All Together

	6 Implementation and Evaluation
	6.1 Compiler Bugs

	7 Limitations and Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

